Definition 5.9: A stochasitc process $\{X_t\}_{t \geq 0}$ is a Gaussian Process if its finite dimensional distributions are consistent Gaussian measures for any $0 \leq t_1 < t_2 < \ldots < t_k$. Recall that a Gaussian random vector $\mathbf{X} = (X_1, X_2,\ldots,X_n)^T$ is completely characterized by its first and second moments $$\mathbf{m} = \mathbb{E}[\mathbf{X}], \quad \mathbf{K} = \mathbb{E}[(\mathbf{X} - \mathbf{m}) (\mathbf{X} - \mathbf{m})^T]$$ Meaning that the characteristic function is expressed only in terms of $\mathbf{m}$ and $\mathbf{K}$ $$\mathbb{E}\left[e^{i \mathbf{\xi} \cdot \mathbf{X}}\right] = e^{i \mathbf{\xi} \cdot \mathbf{m} - \frac{1}{2}\mathbf{\xi}^T \mathbf{K} \mathbf{\xi}} $$ This means that for any $0 \leq t_1 < t_2 < \ldots < t_k$, the measure $\mu_{t_1, t_2, \ldots, t_k}$ is uniquely determined by an $\mathbf{m} = (m(t_1), \ldots, m(t_k))$ and a covariance matrix $\mathbf{K}_{ij} = K(t_i, t_j)$....