6.2 - The Invariance Principle
Let $\{\xi_m\}_{n \in \mathbb{N}}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[\xi_n] = 0$ and $\mathbb{E}[\xi_n^2] = 1$. Then, define $$S_0 = 0, \quad S_N = \sum_{i=1}^N \xi_i$$ and by the Central Limit Theorem, rescaling $S_N$ by $\sqrt{N}$, we get that $$\frac{S_N}{\sqrt{N}} \xrightarrow{d} \mathcal{N}(0,1)$$ (the $\xrightarrow{d}$ means convergence in distribution) as $N \rightarrow \infty$. Using this, we can define a continuous random function $W^N_t$ on $t \in [0,1]$ such that $W_0^N = 0$ and $$W_t^N = \frac{1}{\sqrt{N}}(\theta S_k + (1-\theta)S_{k+1}), \quad Nt \in (k,k+1], \quad k = 0,1,\ldots,N-1$$ where $\theta = \lceil Nt \rceil - Nt$....