2.2 - Symmetric monoidal preorders
2.2.1 - Definition and first examples Definition 2.2: A symmetric monoidal structure on a preoirder $(X, \leq)$ consists of (i) a monoidal unit, $I \in X$ (ii) a monoidal product $\otimes: X \times X \rightarrow X$ And the monoidal product $\otimes(x_1,x_2) = x_1 \otimes x_2$ must also satisfy the following properties (assume all elements are in $X$) (a) $x_1 \leq y_1$ and $x_2 \leq y_2 \implies x_1 \otimes x_2 \leq y_1 \otimes y_2$ (b) $I \otimes x = x \otimes I = x$ (c) associativity (d) commutivity/symmetry (a) is called monotnoicity and (b) is unitality...