
Universal Approximation Properties of Neural

Networks and Transformers

Venkata Hasith Vattikuti, vv8379

April 25, 2025

Contents

1 Introduction 2

2 Notation 2

3 Preliminaries 3
3.1 Norms and Metric Spaces . 3
3.2 Important Classes of Functions 4

3.2.1 Continuous Functions . 4
3.2.2 Lebesgue Integrable Functions 5
3.2.3 Lebesgue Spaces . 5
3.2.4 Sobolev Spaces . 6
3.2.5 Besov Spaces . 6
3.2.6 Lipschitz Spaces . 7

4 Artificial Neural Networks 7
4.1 The Feed Forward Network . 7
4.2 Universal Approximation Theorems of Neural Networks 10

4.2.1 Single Layer ReLU Networks 10
4.2.2 Deep ReLU Networks . 11
4.2.3 Deep v.s. Shallow Networks 13
4.2.4 Adaptive Width Networks 14

4.3 The Curse Of Dimensionality . 14

5 Transformers 15
5.1 The Transformer Network . 16

5.1.1 Inputs and Outputs of Transformers 16
5.1.2 Self-Attention . 16
5.1.3 Multi-Head Attention . 18
5.1.4 Positional Embeddings . 18
5.1.5 Layer Normalization . 19
5.1.6 Transformer Blocks . 19

1

5.1.7 Transformer Model . 20
5.2 Universal Approximation Theorems of Transformers 21

5.2.1 No Positional Embeddings 22
5.2.2 Using Positional Embeddings 23

6 Discussion 24

A Permutational Equivariance of Transformer Blocks 28

1 Introduction

Transformers have been at the heart of the AI boom due to them being the
main mechanism behind many generative AI models such as the generative pre-
trained transformer (which is the namesake of GPT), the diffusion transformer,
and even more specialized problems like protein folding.

Since they have been very successful at a wide range of tasks, it is interest-
ing to explore their universal approximation properties in order to understand
the classes of functions that transformers are restricted to exploring and what
kinds of transformer architectures can guarantee arbitrarily high accuracy in
approximating them.

This report has three main goals. First, we will define a basic artificial
neural network and explore their universal approximation properties. Then, we
will construct a standard transformer model to understand the mappings that
they define. Once we understand how transformers work, we will review recent
literature on their universal approximation properties.

After reading this report, one will have a firm grasp on the structure of
artificial neural networks and transformers and also understand some recent
advances in their approximation properties.

2 Notation

• In = [0, 1]n

• N = {1, 2, 3, . . .}

• [n] = {1, 2, . . . , n}, for n ∈ N,

• w[n] = {w1, w2, . . . , wn}

• 1n = [1, 1, . . . , 1] ∈ Rn

• 1m×n = 1m · 1⊤
n ∈ Rm×n

• U(S) = {s ∈ S|∥s∥ < 1} (the norm will be the standard norm for that set
unless otherwise specified).

2

3 Preliminaries

3.1 Norms and Metric Spaces

It will be important to have a formal way to describe the ‘sizes’ of elements in
vector spaces, which we can do through the concept of norms.

Definition 1 For a vector space X, a norm is a mapping

∥ · ∥ : X → [0,∞)

that satisfies the following conditions for any x, y ∈ X and λ ∈ R:

• ∥λx∥ = λ∥x∥,

• ∥x∥ = 0 ⇐⇒ x = 0,

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

For any norm ∥·∥ on a vector space X, we have an induced metric of dX(x, y) =
∥x− y∥ for any x, y ∈ X.

When dealing with Euclidean vectors, we will by default be using the Eu-
clidean norm as stated in Definition 2.

Definition 2 The Euclidean norm for any x ∈ Rm for any m ∈ N is given by

∥x∥2 =

√√√√ m∑
i=1

x2
i ,

where xi is the ith component of the vector x. The Euclidean norm will be
assumed for any vector unless otherwise stated, and will thus also be denoted
simply as ∥x∥ sometimes, where the fact that x is a Euclidean vector will be
sufficient to assume that we are using the Euclidean norm.

We can generalize the concept of a Euclidean norm to a finite-dimensional
vector norm.

Definition 3 A vector norm or any x ∈ Rm for any m ∈ N is given by

∥x∥p = p

√√√√ m∑
i=1

xp
i .

For vectors of infinite dimensions (also known as sequences), we use the ℓp norm
which is a simple extension of Definition 3.

Definition 4 For a sequence (x1, x2, x3, . . .), the ℓp norm, for 1 ≤ p < ∞ is
defined as

∥x∥p = (|x1|p + |x2|p + |x3|p + . . .)1/p.

3

To help us relate spaces to each other, it will also be important to understand
the concept of one set of functions being dense in another set.

Definition 5 For some set X, an associated metric d on the set, and two sub-
sets Y,Z ⊂ X, we say Y is dense in Z if, for all z ∈ Z and any ϵ > 0, there
exists some y ∈ Y such that

d(y, z) < ϵ.

The concept of some set of functions Y being dense in another set Z will
help us understand how well one class of functions approximates another class
because it allows us to say that for any choice of function in Z, there will always
exist some function in Y that is arbitrarily close to it under the metric d.

We will always assume that we are using the norm-induced metric space for
a vector space, but the case of the Euclidean metric appears frequently enough
that it is worth mentioning. When dealing with Euclidean spaces, we will always
assume the Euclidean metric as seen in Definition 6

Definition 6 The Euclidean metric for two vectors x, y ∈ Rm is defined as

d(x,y) = ∥x− y∥2

where we made use of Definition 2 to define the Euclidean metric as the Eu-
clidean norm of the difference between the two vectors.

Because it is used so often, anytime we deal with vectors or scalars, | · | or ∥ · ∥
will be referring to the Euclidean metric.

3.2 Important Classes of Functions

When studying the approximation properties of certain functions (in this case,
neural networks which we will define in Section 4), we need a formal way to talk
about certain classes of functions.

3.2.1 Continuous Functions

One of the most familiar classes of functions are continuous functions.

Definition 7 A real function f : X → Y is continuous at some x0 ∈ X under
metrics dX and dY for the domain and codomain, respectively if for any ϵ > 0,
there exists some δ > 0 such that

dX(x0, x1) < δ ⇒ dY (f(x0), f(x1)) < ϵ.

Definition 8 A function f : X → Y is said to be continuous if f is continuous
at all x ∈ X.

In addition to continuous functions, another class of functions that we will
encounter are functions with compact support on some domain.

4

Definition 9 A function f : X → Y has compact support on some domain
Ω ⊂ X if Ω is compact and

f(x) = 0, ∀ x /∈ Ω

We will be particularly interested in real functions f : X → R, and the metric
on any subset of R will always be assumed to be the Euclidean metric unless
otherwise stated. We will the denote the set of all real continuous functions on
X as C(X):

C(X) = {f : X → R|f is continuous}.

Additionally, we can define a simple norm on C(X) as

∥f∥C(X) = sup
x∈X

|f(x)|.

3.2.2 Lebesgue Integrable Functions

Another important class of functions are Lebesgue integrable functions. To
define Lebesgue integrable functions, we must first understand the concept of
the Lebesgue measure and Lebesgue-measurable functions which can be found
in [1].

Definition 10 For a measurable set Ω ⊂ Rm, a function f : Ω → R is measur-
able if the inverse image of every open set in R is measurable.

Definition 11 A real measurable function f is integrable over Ω if∫
Ω

|f(x)|µ(dx) < ∞.

The set of all Lebesgue integrable functions on some domain Ω is denoted
as

L(Ω) =
{
f :

∫
Ω

|f(x)|µ(dx) < ∞
}
.

3.2.3 Lebesgue Spaces

Lebesgue spaces, also called Lp spaces are defined for 1 ≤ p < ∞.

Definition 12 For some measurable set Ω ⊂ Rm and a p such that 0 < p < ∞,
we denote Lp(Ω) as the set of all measurable functions f : Ω → R such that∫

Ω

|f(x)|pµ(dx) < ∞.

Note that Definition 11 simply comes from the special case of an Lp space
where p = 1.

5

Each Lp(Ω) space also admits a norm [1], denoted by ∥ · ∥Lp(Ω), where Ω is
the domain that the Lp space is defined on. The exact form of the norm for
1 < p < ∞ is given by

∥f∥Lp(Ω) =

(∫
Ω

|f(x)|pµ(dx)
)1/p

, ∀ f ∈ Lp(Ω)

and we may simply refer to this as ∥f∥p for brevity when it is clear that f
occupies the Lp space on some domain Ω.

In our brief overview of Lp spaces, the p = ∞ case was purposefully omitted
due to its limited use in future sections, but the exact definitions of L∞ and its
corresponding norm can be found in [1].

3.2.4 Sobolev Spaces

To classify continuous functions based on smoothness, we need to refer to how
many derivatives we can take. For some domain Ω, let Cr(Ω) be the set of all

functions with well defined derivatives Dαf for all α, |α| =
∑d

i |αi| = 1; the
norm for Cr(Ω) is given by

∥f∥Cr(Ω) = max
|α|=r

∥Dαf∥C(Ω) + ∥f∥C(Ω).

Then, Sobolev spaces spaces generalize Cr spaces by allowing for weak
derivatives [2] in Dαf ; if we allow such a broadening of our requirement for
Dα, we can define the Sobolev space W r,p(Ω) or W r(Lp(Ω)) as the set of all
f ∈ Lp(Ω) for any 1 ≤ p ≤ ∞ such that Dαf ∈ Lp(Ω) for all |α| = r. We
prescribe Sobolev spaces with a norm similar to that of Cr:

∥f∥W r(Lp(Ω)) = max
|α|=r

∥Dαf∥Lp(Ω) + ∥f∥Lp(Ω).

3.2.5 Besov Spaces

Besov spaces generalize Cr one step further by allowing for non-integer classes of
smoothness [3]. To define Besov spaces, we first define a modulus of smoothness
of order r for a function f ∈ Lp(Ω), 0 < p ≤ ∞ as

ωr(f, t)p = sup
0<|h|≤t

∥∆r
h(f, ·)∥Lp(Ω), t > 0,

where h ∈ Rd, and

∆r
h(f, x) =

r∑
k=0

(−1)r−k

(
r

k

)
f(x+ kh), x ∈ Ω ⊂ Rd

so that ωr(f, t)p → 0 as t → 0 and the rate of convergence depends on the
smoothness of f on Lp(Ω).

6

To allow for non-integer values of r, Besov spaces replace r with any s > 0
and introduce a new parameter 0 < q ≤ ∞. The Besov space Bs

q(L
p(Ω)) is

defined as the set of functions f ∈ Lp(Ω) for which

|f |Bs
q(Lp(Ω)) = ∥t−sωr(f, t)p∥Lq((0,∞),µ(dx)/x) < ∞

where Lq((0,∞), µ(dx)/x) refers to the Lp space on (0,∞) with respect to the
measure µ(dx)/x rather than just µ(dx). The norm on such a Besov space is

∥f∥Bs
q(L

p(Ω)) = |f |Bs
q(Lp(Ω)) + ∥f∥Lp(Ω).

3.2.6 Lipschitz Spaces

Another useful space is the Lipschitz space Lip(α, p) for 0 < α ≤ 1 and 0 < p ≤
∞ consisting of functions f ∈ Lp(Ω) for which

ω1(f, t)p ≤ Mtα.

The p = ∞ case is particularly important so we will define Lip α = Lip(α,C(Ω))
for some domain Ω that should be clear from context if not explicitly stated.

4 Artificial Neural Networks

Artificial neural networks (ANNs), commonly referred to as neural networks or
feed-forward networks, are machine learning models inspired by the human brain
[4]. The most basic elements of a neural network are nodes known as ‘neurons’,
and they pass information through series of neurons known as ‘layers’ with linear
and nonlinear transformations [5].

4.1 The Feed Forward Network

Concretely, a neuron is a function [6] y : Rm → R that is parameterized by a set
of weights {wi ∈ R}i∈[m], a bias b ∈ R, and an activation function ϕ : R → R.
The formula used to compute the output of y for an input x ∈ Rm is given as

y(x) = ϕ

(
m∑
i=1

wixi + b

)
, (1)

with xi denoting the i-th component of the vector x. Visually, this can be rep-
resented as in Figure 1 where each input is multiplied by a corresponding weight
parameter, summed across all inputs, and then passed into an activation func-
tion with an added bias. For a layer made up of n neurons {y1, y2, . . . , yn}, we
can define a vector valued function [8] h : Rm → Rn, where the i-th component
is given by

h̃i(x) =

m∑
j=1

wijxj + bi, (2)

7

Figure 1: A visualization of a single neuron with an n-dimensional input x,
weights w[n],j , a bias θj (referred to as a threshold in the figure), and an acti-
vation function φ : R → R. The j index simply denotes the index of the neuron
itself to remind us of the fact that the neuron is one part of a larger network.
Each component of the input xi gets multiplied by its corresponding weight wij ,
then we obtain the sum s = Σixiwij , and pass it into the activation function
with a bias to get an output activation: oj = φ(s + θj). Image courtesy of
Wikipedia [7].

hi(x) = ϕ
(
h̃i(x)

)
, (3)

where wij and bi denote the weight wj and the bias b of the i-th neuron in the
language of Equation (1). Note that Equation (3) is simply the output of the
i-th neuron, hi(x) = yi(x).

In the interest of being more concise, we can write Equation (1) using a
vector to represent the weights, α ∈ Rn. Then, we have

y(x) = ϕ(α⊤x+ b) (4)

Additionally, we can also express the full form of h̃ in a compact way by using
matrices to represent the linear transformation of multiplying and summing the
weights with the input:

h̃(x) = Wx+ b (5)

h(x) = ϕ(h̃(x)) (6)

Here, in Equation (5), all the weights have been collected into the term W ∈
Rn×m with the each i, j element being wij , all the biases have been collected into
b ∈ Rm with the i-th component being equal to bi, and the activation function
in Equation (6) ϕ is applied element wise. The function h is said to represent a
layer of neurons and the output, h(x), is the output of that layer for an input
x.

8

Figure 2: A feed-forward network with a 3-dimensional input, a 2-dimensional
output, and 8-dimensional hidden layers. The edges indicate a weight between
one node and another, and the arrows show the direction of computation of the
network. Image courtesy of Alexander LeNail [9].

An neural network f : Rm → Rm is defined as a composition of L layers of
neurons [5],

f(x) = [h̃L ◦ hL−1 ◦ . . . h1](x), (7)

where hk : Rdk → Rdk−1 for k ∈ [L] is the function corresponding to the k-th
layer of the neural network, and dk is the number of neurons in the k-th layer,
with d0 = m and dL = n. As an aside, the layers besides the the last layer (those
denoted by the indices 1, 2, . . . , L−1) are often referred to as hidden layers, and
the number of hidden layers are often times simply referred to as the number of
layers since we are always guaranteed to have an input and output layer anyway.
Figure 2 depicts a nerual network made up of two composed functions–meaning
two hidden layers.

Due to the composition of multiple layers each with multiple neurons, f is
a function parametrized by the weights of each layer W [L] and the biases b[L].
Note that each d[L], the number of neurons in each layer; ϕ[L], the choice of
activation functions; as well as L itself, the number of layers, are not usually
treated as hyperparameters are instead treated as constants. Colloquially, each
d[L] is sometimes called the width of the network at each layer, and L is known
as the depth of the network.

Rather than tediously keep track of every parameter as we discuss neural
networks, it is commonplace to gather every hyperparameter into one term θ,
and–to remind ourselves that f is dependent upon these–denote f as f(·; θ) or
fθ, and often times θ is simply referred to as the weights of the model instead of
just w[d] (and that convention will be used throughout this text). Collectively,
the weights θ along with the choice of d[L] make up the architecture of the
neural network. Architecture, however, is a loose term and generally refers to the

9

parameters and constants that specify how to compute the function f , extending
even to other types of models that are not solely made up of neurons such
as convolutional neural network (CNN) models [10], long short term memory
(LSTM) models [11], transformer models [12], etc.

4.2 Universal Approximation Theorems of Neural Net-
works

Under various assumptions on the architectures of neural networks (such as
specific activation functions, upper or lower bounds on the number of neurons,
and a minimum number number of layers), multiple universal approximation
theorems have been proven [3] which–in a qualitative sense–state that that for
any function g in a certain class, there exists a set of weights θ such that fθ can
arbitrarily well approximate g, where fθ is a neural network parametrized by θ.

In this section, we will explore some of these approximation theorems as they
will be useful in understanding what kinds of functions transformer models are
able to approximate. The cases we will be going over include the arbitrary
width but bounded depth case, the bounded width but arbitrary depth case,
and finally the bounded depth and width case for neural networks using the
ReLU activation function,

ReLU(x) = max(x, 0).

First, to define the set of neural networks we will be studying, we will denote
the class of functions corresponding ReLU networks of width W (meaning each
layer has W neurons), depth L, an input of dimension d, and an output of
dimension d′ with ΓW,L(ReLU; d, d′); and each γ ∈ Γ is determined by a total
of

n(W,L) = (d+ 1)W +W (W + 1)(L− 1) + d′(W + 1)

parameters (all the weights and biases of the network). Since we will assume
the use of the ReLU activation and d′ = 1 unless otherwise stated, we can use
the shorthand ΓW,L when the role of d is clear from context.

Then, for some target function f ∈ Lp(Ω), we will be interested in the error
of approximation

E(f,Σn)Lp(Ω) = En(f,Σ)p = inf
s∈Σn

∥f − S∥Lp(Ω)

where Σn is a subset of ΓW,L with n(W,L) parameters. The performance of a
set of networks on some K ⊂ Lp(Ω) is given by

E(K,Σn)p = En(K,Σ)p = sup
f∈K

E(f,Σn)p.

4.2.1 Single Layer ReLU Networks

The most simple case of neural networks that we can study are networks with a
scalar input and output (meaning the neural network defines a one-dimensional
scalar function) with a singular hidden layer.

10

Theorem 1 from [3] provides a theoretical guarantee for the approximation
error for one-layer ReLU networks with input and output dimensions d = d′ = 1,
defined by the set Γn,1(ReLU;1,1).

Theorem 1 Let K = U(Bs
q(Lτ (Ω))) be the unit ball of the Besov space B

s
q(Lτ (Ω))

for 0 < τ ≤ ∞. If 0 < s ≤ 2 and s > 1
τ − 1

p for 1 ≤ p ≤ ∞, then

En(K,Σ)p ≤ C(s, p, τ)(n+ 1)−s, n ≥ 0,

where C(s, p, τ) is some positive constant that is a function of s, p, τ . Theorem
1 shows us that increasing the smoothness exponent of the Besov ball, s, and
the number of parameters in the network, n, will decrease the approximation
error with a rate of O((n+ 1)−s).

For the case where d ≥ 2, we only have upper bounds on the approximation
errors for p = 2 and p = ∞. The result for the former is stated in Theorem 2
from [3] while the latter is given in Theorem 3 from [13].

Theorem 2 For any f ∈ W r,2(Ω) and Σn = Γn,1(ReLU; d, 1), we have

En(f,Σ)2 ≤ Cn−s/d∥f∥W r,2(Ω),

where C = C(d).

Theorem 3 For K = U(Lip 1) in the norm of C(Ω), we can calculate an upper
bound in approximation for networks Σn = Γn,1(ReLU; d, 1):

En(K,Σ)C(Ω) ≤ C
log2 n

n1/d

for C = C(d).

Note that the upper bound in Theorem 2 depends on the target function
itself, whereas Theorem 3 was able to provide an upper bound that only depends
on the architecture of the network and the input dimension.

But single layer networks are not very capable. For instance it has been found
that single layer (and even two layer) networks are not able to approximate all
continuous multivariate functions [14] [15]. Many of the shortcomings of shallow
neural networks are lifted with deeper architectures, and–for that reason–deep
neural networks have been much more widely used in applications.

4.2.2 Deep ReLU Networks

While the concept of deep neural networks has been around since the incep-
tion of neural networks themselves, theoretical advancements in understanding
their universal approximation properties as the depth increases only came about
relatively recently.

First, we will state a result for a fixed width and arbitrary depth published
by Zhou Lu et al. in 2017 [16]. The main result of their work [16] is given in
Theorem 4

11

Theorem 4 For any Lebesgue-integrable function g : Rm → R, there exists a
neural network γ with a ReLU activation, an arbitrary depth, and a width less
than m+ 4 at each hidden layer

γ ∈
∞⋃
j=1

Γm+4,j(ReLU;m, 1)

such that ∫
Rm

|γ(x)− g(x)|µ(dx) < ϵ

for any ϵ > 0.

That is, Lu et al.’s result shows that the set of arbitrary depth, fixed width
ReLU networks are dense in the set of Lebesgue-integrable functions. Theorem
4 is limited for two reasons. The first reason is that we have no bound on the
depth of the neural network, meaning its applications are quite limited. Also,
Theorem 4 is only proven for d = 1.

If we want to want to have depth bounds and also consider cases where
d ≥ 2, we can prove Theorem 5 as found in [3].

Theorem 5 Let s > d
τ − d

p > 0 for τ ≤ ∞ and 1 ≤ p ≤ ∞, and Ω = [0, 1]d.

Suppose K = U(Bs
q(Lτ (Ω))) with 0 < q, then

E(K,Σn[log2 n]β)Lp(Ω) ≤ C(s, d, δ)n−s/d

for n ≥ 1, and the neural networks we are considering are of the form Σn =
Γ6d,Cn(ReLU; d, 1), for n ≥ 1, C = C(s, d, δ), β = max{1, 2d/(s − δ)}, and
δ = s− d

τ + d
p .

If we modify our restrictions to functions in U(Lip α), 0 < α ≤ 1, and
Ω = [0, 1]d, deep ReLU networks have very fast rates of approximation as found
by [17]. The univariate case is shown in Theorem 6.

Theorem 6 Let K = U(Lip 1) on Ω = [0, 1] and Σn = Γ11,16n+2(ReLU;1,1)
for n ≥ 1, then we have

E(K,Σn)C(Ω) ≤ 6n−2.

And in 2020, Lu et al. [18] were able to improve Theorem 6 to provide upper
error bounds for functions in Cs([0, 1]d) where s ∈ N as shown in Theorem 7.

Theorem 7 For an f ∈ Cs([0, 1]d) where s ∈ N, there exists a ReLU network
γ ∈ ΓW,L(ReLU; d, 1) such that

∥f − γ∥C([0,1]d) ≤ c1(s, d)∥f∥Cs([0,1]d)N
−2s/dL−2s/d

for any N,D ∈ N and W = c2(s, d) log2(8N), L = c2(s)(D + 2) log2(4D) + 2d.

12

In the case that s ≥ d, Theorem 7 has an upper bound that scales at least as
well as O(N−2L−2), which is comparable to the upper bound given by Theorem
6 (but this is counteracted by a large sd factor in c1(s, d)).

The O(n−2) rate in Theorem 6 is very fast compared to standard approxi-
mations with only n parameters, which usually only have a rate of O(n−1) [3].
This implies that the space of ReLU networks has space filling properties in
C(Ω). While this seems like an excellent property due to the relatively simple
formulation of ReLU networks, we need to keep in mind that the errors are
given by the global best networks, and it might be numerically difficult to find
such parameters which outpace standard approximation methods.

4.2.3 Deep v.s. Shallow Networks

When comparing deep and shallow networks, nonlinear functions seem to play
an important role in distinguishing the capabilities between the two types of
networks. In order to understand how deep networks are able to perform better
on approximating nonlinear functions compared to shallow networks, we will
need the following theorems [17].

Theorem 8 Let K = U(W r,∞([0, 1]d)) for any d, r ∈ N and ϵ ∈ (0, 1). Then,
there exists a γ corresponding to a ReLU network with N weights and a depth
L such that

∥f − γ∥L∞([0,1]d) < ϵ, f ∈ K,

where N ≤ cϵ−d/r(ln(1/ϵ) + 1) and L ≤ c(ln(1/ϵ) + 1) for some constant c =
c(d, r).

Theorem 9 Let f ∈ C2([0, 1]d) be a nonlinear function. Then, for any fixed
L, if a ReLU network γ with N weights and a depth L approximates f to within
some

∥f − γ∥C2([0,1]d) < ϵ,

then it must be that N ≥ cϵ−1/(2(L−2)).

Theorem 8 provides an upper bound for the total number of weights in the
model, which increases at a rate of O(ϵ−d/r ln(1/ϵ)); and, for a fixed depth L,
Theorem 2 provides a lower bound which increases at a rate of O(ϵ−1/(2(L−2))).
This means that when

d

n
<

1

2(L− 2)
,

and as ϵ tends to 0, the number of weights required by deep networks to achieve
an error ϵ will be lower than that of the shallow network. Additionally, this
effect will be exaggerated for smoother nonlinear functions.

So, in a sense, deep ReLU networks are very efficient approximators while
shallow ReLU networks can be very poor approximators in comparison.

13

4.2.4 Adaptive Width Networks

So far, all previous approximation theorems we explored tried to find the best
possible set of parameters for a fixed architecture in order to approximate a
function. However, if we allow for the architecture to be ‘adaptive’, then we
could expect some performance gains. Indeed, Yarotsky [17] was able to prove
such a result with Theorem 10.

Theorem 10 For any f ∈ U(W 1,∞([0, 1])) and ϵ ∈ (0, 1/2), there exists a
ReLU network γ with depth 6 such that

∥f − γ∥L∞([0,1]) < ϵ,

while having less than c
ϵ ln(1/ϵ) total weights, where c is an absolute constant.

Note that in Theorem 10, we allow for γ to be ‘tailored’ to each chosen func-
tion f , rather than specifying an architecture to approximate a whole class of
functions with an error better than ϵ.

4.3 The Curse Of Dimensionality

It is worth mentioning how neural networks fare against the curse of dimen-
sionality, since we have discussed the ability of neural networks to approximate
functions with multi-dimensional inputs.

The curse of dimensionality is best described with an example. Say we have
a 3-dimensional unit cube. Then, to cover 20% of the cube, we need to cover a
volume of 0.2, which corresponds to a cube with a side length of 3

√
0.2 ≈ 0.58.

If we scale this up to a d = 20 cube, then to explore 20% of that cube, we would
need another cube with a side length of 20

√
0.2 ≈ 0.92. In general, as d ≫ 1,

the size of the cube we would need to cover the same proportion of the volume
grows very quickly.

This is an issue for us because a naive way to approximate functions to a
precision ϵ on Ω = [0, 1]d would be to discretize the domain to small cubes at
localize the approximation for the neural network at each cube. So for example
[19], it would not be unusual to see a statement like Theorem 11.

Theorem 11 Let f : [0, 1]d → R be in Lip 1 and ϵ > 0. Then, there exists a
ReLU network γ ∈ ΓW,3 such that

∥f − γ∥L1 ≤ ϵ,

where W is on the order of O(1/ϵd).

But the scaling given by Theorem 11 is clearly undesirable due to its 1/ϵd

scaling, especially since neural networks are frequently used in high-dimensional
contexts such as image recognition.

However, Barron’s Theorem [20] shows that neural networks are able to
overcome this hurdle. Barron’s theorem relies on sigmoidal activation functions
as defined in Definition 13, and uses those to construct a a three-layer network
which scales favorably.

14

Definition 13 A continuous function f : R → R is sigmoidal if it satisfies

lim
x→∞

f(x) = 1

lim
x→−∞

f(x) = 0

Theorem 12 For f : Ω → R, Ω ⊂ Rm, and ϵ > 0, there exists a two-layer
neural network γ with a sigmoidal activation of width less than

k ≤ 8Vol(Ω)

ϵ2
(8πC)2

such that
∥f − γ∥2 ≤ ϵ,

where

C =

∫
Rm

∥w∥2|f̂(w)|dw

is required to be finite, and

f̂(w) =

∫
Ω

e−2πiw·xf(x)dx.

For the case where Ω = [0, 1]d Barron’s Theorem, as stated in 12 shows

that we can maintain a parameter scaling of O(C
2

ϵ2) which is much better than
O(1/ϵd) found in Theorem 11. So, neural networks are somewhat able to avoid
the curse of dimensionality.

5 Transformers

Neural networks have been wildly successful at solving many different types of
problems, and new types of models which have been tailored to specific tasks
to gain an advantage over simple artificial neural networks are constantly being
explored [21].

One of the most recently developed models that has made a significant im-
pact in machine learning research is the ‘transformer’. Transformer models,
while originally developed in 2017 for the purpose of text translation [12], have
been utilized in a wide range of generative AI applications from text and image
generation [12] [22] [23] to time series prediction [24].

At the heart of all these transformer models is a specific step in the compu-
tation known as a ‘transformer block’. Transformer blocks, somewhat akin to
layers in an artificial neural network, are composed with each other and then
embedded as a part of a larger model that combines neural networks as well
as possibly other architectures to produce an output; and transformer blocks
themselves are made up of activation normalization steps, a feed-forward net-
work, and a series of linear transformations plus biases known as ‘self-attention’
layers which is the core mechanism of a transformer block.

15

5.1 The Transformer Network

Most modern implementations of transformer models in generative AI appli-
cations are known as decoder-only, generative transformers (from here on, any
mention of ‘transformer’ will be referring to decoder-only, generative transform-
ers). We will now walk through a basic transformer model from the input to
the output, step by step, covering all the necessary computations throughout
the model.

5.1.1 Inputs and Outputs of Transformers

Decoder-only generative transformers usually take a sequence of dmodel dimen-
sional vectors as the input and then output a singular vector of dimension d.
While transformer models can handle a variable sequence length, they are usu-
ally only trained on a maximum sequence length: meaning that it is possible to
use sequences shorter than the maximum sequence length, but they will not be
able to handle sequences longer than that maximum very well. The maximum
number of vectors in the sequence that the model can handle is known as the
context window of the transformer.

In natural language settings, the goal is usually to be to predict the next
token given a sequence of tokens. A token is a small string–usually only a
few characters–that is assigned a unique id, and all the tokens that we assign
an id to make up the vocabulary of the model. For more information on how
tokenization algorithms break apart sentences, refer to [25] [26] and [27], which
are all popular algorithms to tokenize text. The tokenized text is then inputted
into an embedding model which prescribes quantifiable meaning to the tokens.
Embedding algorithms can be as basic as assigning a vector to each token [28]
or they can take contextual clues into account [29]. The tokenizer and the
embedding method, together, are able to convert a string of text into a sequence
of vectors–with one vector of dimension d for each token.

The output of the transformer in natural language settings is still a dmodel

dimensional vector, but in order to predict the next token, the vector is then used
to assign a probability among all the tokens in the vocabulary. One common
way to do this is to apply a decoder matrix Wdec ∈ Rdvocab×dmodel to the output
vector u ∈ Rdmodel , where dvocab is the size of the vocabulary, and then apply a
softmax operation to the vector to obtain a probability for each token.

5.1.2 Self-Attention

For a given sequence of T vectors, x[T] ∈ Rdmodel , we can arrange the sequence

into an array X ∈ RT×dmodel :

X = [x1, x2, . . . , xT].

Then, we compute Q,K, V ∈ RT×d, the queries, keys, and values, respectively,
as

Q(X) = XWQ

16

K(X) = XWK

V (X) = XWV ,

where WQ,WK ,WV ∈ Rdmodel×d are the learnable hyperparameters of the
model, also referred to as the query, key, and value matrices/weights. For an
explanation of the names of the query, key, and value matrices, refer to [12] [30].
Then, attention [12] is computed as

attn(Q,K, V) = S
(
MASK

(
QK⊤
√
d

))
V. (8)

In Equation (8), we introduced three important features of transformers: the
scaled dot product, the causal mask, MASK, and the softmax operation S.

The scaling of the dot product, QK⊤, by a factor of
√
d serves as a way to

normalize the values of the QK⊤ as dmodel increases. For example, if we assume
that each row in Q and K have elements with mean 0 and variance 1, then the
dot products of each row in Q with those in K will be of the form

∑d
i=1 qiki,

and will thus have mean 0 and variance d [12].
The causal mask is a simple operation that sets certain elements in a matrix

to −∞:

MASK(M)ij =

{
Mij , i ≥ j

−∞, i < j
.

The effect of applying a causal map to the scaled dot product is that the queries
earlier in the sequence will not be able to ‘see’ keys after its position in the
sequence. Otherwise, we would have data leakage since the model will be learn-
ing to predict the next token based on previous tokens as well as future tokens.
The mask ensures that the softmax will ignore the effects of future tokens. The
causal map is unique to generative transformers and is also only necessary dur-
ing the training phase, since during inference we only need to predict one token
at a time, so only the last row of Q is used (whereas during training, it is usually
more computationally efficient to compute multiple next tokens with one matrix
multiplication, which we will achieve with QK⊤).

The matrix MASK
(

QK⊤
√
d

)
∈ RT×T gives us some sort of ‘attention score’

for each pair of tokens according to WQ and WV . The higher the score relative
to other pairs, the more important the connection between those two tokens is.

The softmax operation, S : RT×T → RT×T , is applied to MASK
(

QK⊤
√
d

)
in

a row-wise fashion. For an array A ∈ Rm×n, we have the i, j element of S(A)
being equal to

Sij(A) =
exp(Aij)∑n
k=1 exp(Aik)

. (9)

Then, multiplying S
(
MASK

(
QK⊤
√
d

))
with V gives us a type of weighted aver-

age among the values of each token (the rows of V).

17

5.1.3 Multi-Head Attention

Multi-head attention (MHA) is a simple extension of self-attention in that we
simply sum over multiple attn functions with a different set of WQ,WK ,WV

each time. Then, we use another linear transformation WO to project each attn
output back to dmodel.

Concretely, MHA is calculated as

MHA(X) =

h∑
i=1

attn(XWQ
i , XWK

i , XWV
i)WO

i . (10)

In Equation 10, each i index denotes a different ‘head’ where we have a new set
of WQ

i ,WK
i ,WV

i , and WO
i . To remind ourselves of the shapes of the hyperpa-

rameters, we have WQ
[h],W

K
[h],W

V
[h] ∈ Rdmodel×d and WO

[h] ∈ Rd×dmodel .

5.1.4 Positional Embeddings

If you ignore the mask, the attn function in Equation (8) has the unique property
that you can permute the rows of rows of X to obtain Q′,K, V ′, and you will
have that attn(Q′,K ′, V ′) is simply attn(Q,K, V) permuted in an identical way.
This is called permutational equivariance.

Definition 14 A function f : Rm×n → Rm×n, for any m,n ∈ N, is permuta-
tion equivariant if for any permutation matrix P , f satisfies

f(PX) = Pf(X), ∀ X ∈ Rm×n.

Intuitively, this means that you can swap any two rows of X and the result of
applying f to the permuted X will be equivalent to permuting the rows of f(X)
in the same way.

The proof for the permutational equivariance of self-attention without any
masking step (and the masking step is usually only done during training) can
be found in Section A.

The consequences of this in language models is that the transformer cannot
learn any differences between different orderings of tokens for sequences of the
same length. To prescribe meaning to different orders, we will need to use posi-
tional embeddings. Positional embeddings are added to the token embeddings
to produce an array that has both information about the meaning of individual
tokens as well as the meaning of the position in the context window.

While there are multiple ways to implement positional embeddings [31], the
general idea is that for some sequence of token embeddings X, we obtain a
new encoding, E, which takes positional information into account with a linear
transformation on X plus X:

E = X + PeX,

where Pe is the linear transformation on X.

18

Positional embeddings are not crucial to understanding the mechanisms of
transformers, so they are left out in this walkthrough of transformer models
inconsequentially, but we will revisit them.

5.1.5 Layer Normalization

In each transformer block, we apply layer normalization steps multiple times.
Currently, there are two popular layer normalization techniques: LayerNorm
[32] and root means square layer normalization (RMSNorm) [33].

Both LayerNorm and RMSNorm are functions of activations, which in our
case, will be the elements of an array of dimension RT×dmodel .

For either normalization method, we first compute the mean and standard
deviation of the activations for the rows of an array X ∈ RT×dmodel :

µl(X)i =
1

dmodel

dmodel∑
j=1

Xij

σl(X)i =

√√√√ 1

dmodel

dmodel∑
j=1

(
Xij − µl(X)i

)2
.

Then, the elements of the LayerNorm-ed array are computed as

LayerNorm(X)ij =
Xij − µl(X)i

σl(X)i
.

RMSNorm, on the other hand, does not have the (−µl(X)1T×dmodel
) term:

RMSNorm(X)ij =
Xij

σl(X)i
.

The (−µl(X)1T×dmodel
) term serves to center the activations, but destroys

information in the process, disallowing a perfect reconstruction of the original
activations from the LayerNorm’s output [34]. While some hypothesize that
RMSNorm performs better than LayerNorm due to the fact it allows us to fully
reconstruct the original activations from its output, multiple state-of-the-art
models have been built with LayerNorm [35] [36] as well as RMSNorm [37] [22].

5.1.6 Transformer Blocks

Now, we can build the transformer block, the basic units of transformer net-
works. There are many different implementations of transformer blocks, but
essentially, almost all of them are sums of compositions of attention layers,
layer normalizations, and feed forward networks.

As an example, say we have an input X ∈ RT×dmodel , then a reasonable
transformer block would be given by Ti : RT×dmodel → RT×dmodel

T̃i(X) = LayerNorm(X +MHAi(X)) (11)

Ti(X) = LayerNorm(fθi(T̃i(X)) + T̃i(X)), (12)

19

Figure 3: A standard architecture of a transformer block which has a self at-
tention layer, a layer normalization step, a feedforward network, and another
layer-normalization step. The + symbols represent residual connections [38].
Image courtesy of Peter Bloem [30].

where fθi : RT×dmodel → RT×dmodel is a feed-forward network (usually consisting
of only one layer) with parameters θi where the i index indicates that we can
(and usually do) have multiple transformer blocks in a single transformer net-
work, each with their own parameters of query, key, and value weights for the
multi-head attention and θi for the feed-forward network.

You may notice that in Equation (11) we add X to its multi-head attention
output, and in Equation (12) we add T̃i(X) to its feed-forward network output.
Such operations are known as residual connections [38]. Without going too far
into the details, residual connections were originally intended to solve the vanish-
ing gradient problem [39], which is when gradient updates to parameters hardly
affect the parameters in the first few layers when compared to parameters in the
last few layers–decreasing the effective width of the network. Transformer net-
works, as we will see shortly, can also become very deep, so residual connections
become very useful to be able to update parameters throughout the network.

Instead of the explicit form of Ti in Equation (12), it is often more helpful
to visualize the function in a diagram as given by Figure 3 which communicate
the basic sequence of the Transformer block while leaving smaller details such
as the exact architecture of the feed-forward networks up to the reader to fill in.

5.1.7 Transformer Model

With a well-defined transformer block, we can build a full transformer network.
A very basic transformer network, TN(·) : RT×dmodel → RT×dmodel , can simply
by a composition of b ∈ N transformer blocks

TN(X) = Tb ◦ Tb−1 ◦ . . . ◦ T1(E(X)), (13)

where each transformer block Ti is also a mapping from RT×dmodel to RT×dmodel ,
and E(X) applies the positional embeddings onto X. Again, a visualization of
an example network is provided in 4.

20

Figure 4: An example transformer network comprised of two transformer blocks.
Most implementations of large language models can have 50+ transformer
blocks, but the overall structure remains very similar [37].

As a concrete example, for text generative transformers, X is a sequence
of T embeddings each of dimension dmodel, and E(X) gives us the positionally
embedded sequence, which gets passed into a series of transformer blocks and
outputs another sequence of vectors with a similar length and dimension. Typ-
ically, each vector in the output sequence will also have an additional linear
transform which ‘unembeds’ the vector to obtain a probability distribution over
all tokens in the vocabulary, which serves to determine the most likely tokens
to follow the given sequence.

5.2 Universal Approximation Theorems of Transformers

In this section, we will be exploring the classes of functions that transformers are
able to approximate. We will explore transformers as universal approximators
of sequence-to-sequence functions by studying work done by Yun et al. [40].

Definition 15 Sequence-to-sequence functions map a sequence of some fixed
number of M ∈ N vectors of dimension m to another sequence of N ∈ N vectors
of dimension n. These sequences can be arranged into matrices in RM×m for
the inputs and matrices in RN×n for the outputs. That is, we can express any
sequence to sequence function, f as

f : RM×m → RN×n.

Some sequence-to-sequence functions can have the property of being permu-
tationally equivariant as defined in Definition 14.

We will use FPE(Rm×n) to denote the class of all continuous permutationally
equivariant functions with compact support that map Rm×n to Rm×n for some
choice of m,n ∈ N. Continuity in FPE will be enforced with an entry-wise ℓp

norm for 1 ≤ p < ∞. That is, a function f ∈ FPE(Rm×n) is continuous at some

21

sequence X0 under the entry-wise ℓp norm if for any ϵ > 0, there exists a δ > 0
such that ∑

i∈[m],j∈[n]

|(X0)ij −Xij |p
1/p

< δ =⇒

 ∑
i∈[m],j∈[n]

|f(X0)ij − f(X)ij |p
1/p

< ϵ.

The metric used define a distance between two functions f1, f2 ∈ FPE(Rm×n)
is similarly

dp(f1, f2) =

(∫
∥f1(X)− f2(X)∥ppdX

)1/p

.

To study the sequence-to-sequence approximation properties of transformers,
the form of self-attention we will be studying is given by

attn(X) = X +

h∑
i=1

S((XWQ
i)(XWK

i)⊤)XWV
i WO

i , (14)

where all the terms and hyperparameters in the equation are similar to their
corresponding terms in Equations (8) and (10). If we take X ∈ RT×dmodel ,

the shapes of the hyperparameters are WQ
[h],W

K
[h],W

V
[h] ∈ Rdmodel×d,WO

[h] ∈
Rd×dmodel . However, note that this is a redefinition from Equation (8) since
we no longer use a mask.

5.2.1 No Positional Embeddings

Without an positional embeddings, the transformer block is given by

th,m,r(X) = attn(X) + ReLU(attn(X)W1 + 1T b
⊤
1)W2 + 1T b

⊤
2 , (15)

where W1 ∈ Rdmodel×r,W2 ∈ Rr×dmodel , b1 ∈ Rr, b2 ∈ Rdmodel and we use the attn
function defined in Equation (14). In Equation (14), h represents the number
of heads and d represents the head size; and in Equation (15), the parameter r
represents the size of the hidden layer of the feed forward network in Equation
(12).

With a solid definition of a transformer block, we can now define our set of
transformer networks, T h,d,r, as the composition of multiple transformer blocks
with h heads of dimension d and a feed forward network with a hidden layer of
dimension r:

T h,m,r = {g : RT×dmodel → RT×dmodel |g is a composition of blocks th,m,r}.

For any g ∈ T h,m,r, the composed transformer blocks do not necessarily share
the same query, key, and value weights.

Note that the only difference between the transformer block given by Equa-
tion (15) and the transformer block defined in Equation (13) is that we don’t
have a layer normalization step and our attention function is slightly modi-
fied. Still, we maintain many important features of transformer blocks such as
permutational equivariance:

22

Theorem 13 The transformer block given by th,m,r is permutation equivariant.
That is,

th,m,r(PX) = Pth,m,r(X)

for any permutation matrix P .

The proof for Theorem 13 will be given in Section A.
The fact that transformer blocks are permutation equivariant means that

any transformer network in T h,m,r will also be permutation equivariant, so it
is natural to assume that they will be able to approximate some subset of the
class of all permutationally equivariant functions. Indeed, the main result by
Yun et al. shown in Theorem 14 found that transformer networks are able to
approximate all continuous, permutationally equivariant functions with compact
support arbitrarily well.

Theorem 14 Let 1 < p < ∞ and ϵ > 0, then for any f ∈ FPE(RT×dmodel),
there exists a transformer network g ∈ T 2,1,4, such that dp(f, g) ≤ ϵ on the set
Ω that f has compact support on.

5.2.2 Using Positional Embeddings

We can break the permutation equivariance property of transformer networks
with positional embeddings. We can incorporate positional embeddings into our
transformer networks by simply adding some embedding E ∈ RT×dmodel to the
original input X. Then, let

T h,m,r
P = {gP (X) = g(X + E)|g ∈ T h,m,r, E ∈ RT×dmodel}

be the class of all transformer networks with positional embeddings.
By studying the approximation properties of transformer networks with po-

sitional embeddings, Yun et al. was able to obtain Theorem 15 which states
that transformer networks can approximate any function in FCD, the set of all
functions that are continuous on a compact set and map RT×dmodel to RT×dmodel .

Theorem 15 Let 1 < p < ∞ and ϵ > 0, then for any f ∈ FCD(RT×dmodel),
there exists a transformer network g ∈ T 2,1,4

P , such that dp(f, g) ≤ ϵ on the set
Ω that f has compact support on.

Together, Theorems 14 and 15 tell us about the approximation properties
of bounded width, arbitrary depth transformer networks (in the sense that we
specify the head size, head dimension, and hidden layer width, but allow for
an arbitrary amount of transformer blocks to be composed together.) What is
especially surprising about the result of these theorems is that the parameters
(h,m, r) needed to approximate FCD or FPE do not have a dependence on
T or dmodel. Also, despite self-attention only being able to capture pair-wise
interactions, it is interesting to see that the class of functions that transformers
can approximate well is reasonably rich.

23

6 Discussion

Neural networks have been very useful in a wide range of applications, and
recently theoretical guarantees for their approximation properties in Section 4.2
have given us insight into why neural networks are so effective in approximating
continuous functions.

Transformers networks as defined in Section 5 are among some of the latest
iterations of a deep learning architecture, and they, too, have been extremely
effective at solving lots of tasks. Due to their versatility, we looked into their
universal approximation properties in Section 5.2 and found that they are able to
approximate sequence to sequence functions with permutational equivariance,
the permutational equivariance condition is relaxed when we allow for posi-
tional embeddings. Despite the fact that we only have results for the bounded
width and arbitrary depth case, we were able to observe how transformer net-
works only need relatively small architectures to well-approximate sequence-to-
sequence functions.

Our discussion has provided insight into the types of functions neural net-
works and transformer networks are able to approximate arbitrarily well. As
transformers are used in larger and more capable networks, understanding their
universal approximating properties will be very useful in making sure that trans-
former networks scale efficiently, and so more research into the classes of func-
tions they are able approximate is needed, especially in the regimes of bounded
width and bounded depth.

References

[1] T. Arbogast and J. L. Bona, “Methods of Applied Mathematics.”

[2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential
Equations. Springer Science & Business Media, Nov. 2010. Google-Books-
ID: GAA2XqOIIGoC.

[3] R. DeVore, B. Hanin, and G. Petrova, “Neural network approximation,”
Acta Numerica, vol. 30, pp. 327–444, May 2021.

[4] S. C. Peter, J. K. Dhanjal, V. Malik, N. Radhakrishnan, M. Jayakanthan,
and D. Sundar, “Quantitative Structure-Activity Relationship (QSAR):
Modeling Approaches to Biological Applications,” in Encyclopedia of Bioin-
formatics and Computational Biology (S. Ranganathan, M. Gribskov,
K. Nakai, and C. Schnbach, eds.), pp. 661–676, Oxford: Academic Press,
Jan. 2019.

[5] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, Aug.
2006. Google-Books-ID: qWPwnQEACAAJ.

[6] R. A. Alzahrani and A. C. Parker, “Neuromorphic circuits with neural
modulation enhancing the information content of neural signaling,” in In-

24

ternational Conference on Neuromorphic Systems 2020, ICONS 2020, (New
York, NY, USA), Association for Computing Machinery, 2020.

[7] W. Commons, “File:artificial neuron structure.svg — wikimedia commons,
the free media repository,” 2024. [Online; accessed 22-April-2025].

[8] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals and Systems, vol. 2, pp. 303–314, Dec.
1989.

[9] A. LeNail, “Nn-svg: Publication-ready neural network architecture
schematics,” Journal of Open Source Software, vol. 4, no. 33, p. 747, 2019.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015. Publisher: Nature Publishing Group.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, pp. 1735–1780, Nov. 1997.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
. u. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in
Neural Information Processing Systems, vol. 30, Curran Associates, Inc.,
2017.

[13] F. Bach, “Breaking the curse of dimensionality with convex neural net-
works,” Journal of Machine Learning Research, vol. 18, no. 19, pp. 1–53,
2017.

[14] N. J. Guliyev and V. E. Ismailov, “On the approximation by single hidden
layer feedforward neural networks with fixed weights,” Neural Networks,
vol. 98, pp. 296–304, Feb. 2018.

[15] N. J. Guliyev and V. E. Ismailov, “Approximation capability of two hidden
layer feedforward neural networks with fixed weights,” Neurocomputing,
vol. 316, pp. 262–269, 2018.

[16] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of
neural networks: A view from the width,” Advances in neural information
processing systems, vol. 30, 2017.

[17] D. Yarotsky, “Error bounds for approximations with deep ReLU networks,”
Neural Networks, vol. 94, pp. 103–114, Oct. 2017.

[18] J. Lu, Z. Shen, H. Yang, and S. Zhang, “Deep network approximation for
smooth functions,” SIAM Journal on Mathematical Analysis, vol. 53, no. 5,
pp. 5465–5506, 2021.

[19] H. Hadiji, “Theoretical Principles of Deep Learning - Class II: Approxima-
tion with Neural nets,” December 2024.

25

[20] A. Barron, “Universal approximation bounds for superpositions of a sig-
moidal function,” IEEE Transactions on Information Theory, vol. 39, no. 3,
pp. 930–945, 1993.

[21] J. Schneider and M. Vlachos, “A survey of deep learning: From activations
to transformers,” in ICAART (2), pp. 419–430, 2024.

[22] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozire, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “LLaMA: Open and Efficient Foundation Lan-
guage Models,” Feb. 2023. arXiv:2302.13971 [cs].

[23] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in
2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 4172–4182, 2023.

[24] A. F. Ansari, L. Stella, A. C. Turkmen, X. Zhang, P. Mercado, H. Shen,
O. Shchur, S. S. Rangapuram, S. P. Arango, S. Kapoor, J. Zschiegner, D. C.
Maddix, H. Wang, M. W. Mahoney, K. Torkkola, A. G. Wilson, M. Bohlke-
Schneider, and B. Wang, “Chronos: Learning the language of time series,”
Transactions on Machine Learning Research, 2024. Expert Certification.

[25] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare
words with subword units,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)
(K. Erk and N. A. Smith, eds.), (Berlin, Germany), pp. 1715–1725, Asso-
ciation for Computational Linguistics, Aug. 2016.

[26] M. Schuster and K. Nakajima, “Japanese and Korean voice search,” in 2012
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5149–5152, Mar. 2012. ISSN: 2379-190X.

[27] T. Kudo and J. Richardson, “SentencePiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations (E. Blanco and W. Lu, eds.),
(Brussels, Belgium), pp. 66–71, Association for Computational Linguistics,
Nov. 2018.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings, 2013.

[29] P. Dufter, M. Schmitt, and H. Schtze, “Position information in transform-
ers: An overview,” Computational Linguistics, vol. 48, pp. 733–763, 09
2022.

[30] P. Bloem, “Transformers from scratch,” Aug. 2019.

26

[31] L. Zhao, X. Feng, X. Feng, W. Zhong, D. Xu, Q. Yang, H. Liu, B. Qin,
and T. Liu, “Length extrapolation of transformers: A survey from the
perspective of positional encoding,” arXiv preprint arXiv:2312.17044, 2023.

[32] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” July 2016.
arXiv:1607.06450 [stat].

[33] B. Zhang and R. Sennrich, “Root mean square layer normalization,”
in Advances in Neural Information Processing Systems (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds.), vol. 32, Curran Associates, Inc., 2019.

[34] A. Gupta, A. Ozdemir, and G. Anumanchipalli, “Geometric Interpretation
of Layer Normalization and a Comparative Analysis with RMSNorm,” Feb.
2025. arXiv:2409.12951 [cs].

[35] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
Language Understanding by Generative Pre-Training,” Unpublished Work,
June 2018.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers) (J. Burstein, C. Doran, and T. Solorio, eds.),
(Minneapolis, Minnesota), pp. 4171–4186, Association for Computational
Linguistics, June 2019.

[37] DeepSeek-AI, A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao,
C. Deng, C. Zhang, C. Ruan, D. Dai, D. Guo, D. Yang, D. Chen, D. Ji,
E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao,
H. Xu, H. Wang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li, H. Qu, J. L.
Cai, J. Liang, J. Guo, J. Ni, J. Li, J. Wang, J. Chen, J. Chen, J. Yuan,
J. Qiu, J. Li, J. Song, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang,
K. Yu, L. Wang, L. Zhang, L. Xu, L. Xia, L. Zhao, L. Wang, L. Zhang,
M. Li, M. Wang, M. Zhang, M. Zhang, M. Tang, M. Li, N. Tian, P. Huang,
P. Wang, P. Zhang, Q. Wang, Q. Zhu, Q. Chen, Q. Du, R. J. Chen, R. L.
Jin, R. Ge, R. Zhang, R. Pan, R. Wang, R. Xu, R. Zhang, R. Chen, S. S.
Li, S. Lu, S. Zhou, S. Chen, S. Wu, S. Ye, S. Ye, S. Ma, S. Wang, S. Zhou,
S. Yu, S. Zhou, S. Pan, T. Wang, T. Yun, T. Pei, T. Sun, W. L. Xiao,
W. Zeng, W. Zhao, W. An, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang,
X. Q. Li, X. Jin, X. Wang, X. Bi, X. Liu, X. Wang, X. Shen, X. Chen,
X. Zhang, X. Chen, X. Nie, X. Sun, X. Wang, X. Cheng, X. Liu, X. Xie,
X. Liu, X. Yu, X. Song, X. Shan, X. Zhou, X. Yang, X. Li, X. Su, X. Lin,
Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Y. Zhang, Y. Xu, Y. Xu,
Y. Huang, Y. Li, Y. Zhao, Y. Sun, Y. Li, Y. Wang, Y. Yu, Y. Zheng,
Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Tang, Y. Piao, Y. Wang, Y. Tan,
Y. Ma, Y. Liu, Y. Guo, Y. Wu, Y. Ou, Y. Zhu, Y. Wang, Y. Gong, Y. Zou,

27

Y. He, Y. Zha, Y. Xiong, Y. Ma, Y. Yan, Y. Luo, Y. You, Y. Liu, Y. Zhou,
Z. F. Wu, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Huang, Z. Zhang,
Z. Xie, Z. Zhang, Z. Hao, Z. Gou, Z. Ma, Z. Yan, Z. Shao, Z. Xu, Z. Wu,
Z. Zhang, Z. Li, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie, Z. Song, Z. Gao, and
Z. Pan, “DeepSeek-V3 Technical Report,” Feb. 2025. arXiv:2412.19437 [cs].

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[39] J. F. Kolen and S. C. Kremer, “Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies,” in A Field Guide to Dy-
namical Recurrent Networks, pp. 237–243, IEEE, 2001.

[40] C. Yun, S. Bhojanapalli, A. S. Rawat, S. Reddi, and S. Kumar, “Are trans-
formers universal approximators of sequence-to-sequence functions?,” in
International Conference on Learning Representations, 2020.

A Permutational Equivariance of Transformer
Blocks

To prove that transformer blocks (15) are permutationally equivariant, we need
to show that

th,m,r(PX) = Pth,m,r(X).

This will be done in two steps. First, we will show that the attn function (14)
is permutationally equivariant. Suppose we have an input and any permutation
matrix X,P ∈ RT×dmodel , then note that for a permuted input PX,

(PXWQ)(PXWK)⊤ = P (XWQ)(XWK)⊤P⊤.

Since the softmax operation is row-wise, it then follows that

attn(Q(PX),K(PX), V (PX)) = PX +

h∑
i=1

PS((XWQ
i)(XWK

i)⊤)P⊤PXWV
i WO

i

= PX +

h∑
i=1

PS((XWQ
i)(XWK

i)⊤)XWV
i WO

i

= P

(
X +

h∑
i=1

S((XWQ
i)(XWK

i)⊤)XWV
i WO

i

)
= P attn(Q(X),K(X), V (X)),

where we used the fact that P⊤P = I. Next, for the feed-forward layer, we have

th,m,r(PX) = P attn(X) + ReLU(P attn(X)W1 + P1T b
⊤
1)W2 + P1T b

⊤
2

= P th,m,r(X)

28

where we used the fact that the ReLU activation function is permutationally
equivariant since it acts element-wise on its input, and we permuted the biases
by assuming that the feedforward network acts token-wise.

29

	Introduction
	Notation
	Preliminaries
	Norms and Metric Spaces
	Important Classes of Functions
	Continuous Functions
	Lebesgue Integrable Functions
	Lebesgue Spaces
	Sobolev Spaces
	Besov Spaces
	Lipschitz Spaces

	Artificial Neural Networks
	The Feed Forward Network
	Universal Approximation Theorems of Neural Networks
	Single Layer ReLU Networks
	Deep ReLU Networks
	Deep v.s. Shallow Networks
	Adaptive Width Networks

	The Curse Of Dimensionality

	Transformers
	The Transformer Network
	Inputs and Outputs of Transformers
	Self-Attention
	Multi-Head Attention
	Positional Embeddings
	Layer Normalization
	Transformer Blocks
	Transformer Model

	Universal Approximation Theorems of Transformers
	No Positional Embeddings
	Using Positional Embeddings

	Discussion
	Permutational Equivariance of Transformer Blocks

