5.1 - Axiomatic Construction of Stochastic Process
Definition of a stochastic process A stochastic process is a parameterized random variable $\{X_t\}_{t\in\mathbf{T}}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking on values in $\mathbb{R}$. $\mathbf{T}$ can seemingly be any subset of $\mathbb{R}$. For any fixed $t \in \mathbf{T}$, we can define the random variable $$X_t: \Omega \rightarrow \mathbb{R}, \quad \omega \rightarrowtail X_t(\omega)$$ Thinking of a simple random walk, this means that $X_t$ is a random variable that takes in some subset of $\Omega = \{H,T\}^\mathbb{N}$ and outputs a real valued number (the sum of the first $t$ values in $\omega$): $\{\omega_1, \omega_2, \ldots \} \rightarrow \sum_{n \leq t} X(\omega_n)$...