
Category Theory Notes
Hasith Vattikuti

Chapter 1: Generative effects: Orders and adjunctions

1.1 More than the sum of their parts

• We begin by defining some relation ≤ on a system S as well as a function Φ : S → B

• A basic ordered structure is a preorder, where some elements are related to each other. In a sense,

the boolean set is also a preorder since false ≤ false, false ≤ true, and false ≤ true if we a ≤ b is

defined as a ⇒ b.

• We have a possibility of a generative effect when ϕ(A) ∨ ϕ(B) ≤ ϕ(A ∨ B). In the case where

the inequality is strict, we do indeed have a generative effect

1.2 What is order?

Definition 1.12. A relation between X and Y is a subset R ⊆ X × Y . A binary relation on X is a

relation between X and X (so a relation between X and X ).

• I think this definition is trying to say that if we have a binary relation such as ≤ on N, the R

will look like {(1, 2), (1, 3), . . . , (2, 3), (2, 4), . . .}. This is further confirmed by Example 1.13 since

it says that (5, 6) ∈ R.

Definition 1.14. A partition of a set A is a collection of disjoint subsets of A whose union is equal to

A.

Definition 1.18. An equivalence relation on a set A is a binary relation ∼ such that ∀ a, b, c ∈ A,

• a ∼ a

• a ∼ b iff b ∼ a

• if a ∼ b and b ∼ c, then a ∼ c

Each are called reflexivity, symmety, and transitivity.

• Note that each partition of a set gives rise to an equivalence relation and each equivalence relation

gives rise to a partition. Therefore, there is a one-to-one correspondence between the ways to

partition a set and the equivalence relations on it.

• I don’t fully understand definition 1.21, however, it doesn’t seem too important

Definition 1.30. A preorder relation on a set X is a binary relation on X , here denoted with infix ≤
such that

(a) x ≤ x

(b) if x ≤ y and y ≤ z , then x ≤ z

These are called reflexivity and transitivity. Also, if x ≤ y and y ≤ x , then we say x ∼= y and that x and

y are equivalent. A pair (X ,≤) is called a preorder

1



• Discrete preorders are preorders of the form (X ,=), so every item is only comparable with itself

and nothing else. A Codiscrete preorder is the opposite where every two items are related by

the binary relation, both ways. (A preorder does not have to be symmetric)

• A Partial order is a preorder with the additional condition

(c) x ∼= y ⇒ x = y

• A Total order is a partial order where any two elements are comparable.

• Haase diagrams are essentially graphs where the nodes are the elements, and the edges are the

relations between them. We have an edge a ∈ A with source and target functions defined as

s(a) = v and t(a) = w given that a is an edge from v to w . Then, we have that v ≤ w if the

binary relation is denoted by ≤.

• Partitions have a notion of ”fineness”. We say that a partition P is finer than another Q if for

every p ∈ P , ∃ q ∈ Q such that Ap ⊆ Aq .

• In Exercise 1.53, we apply that paritions can be expressed as surjective functions. Given some

surjective function, the preimage of each element in the range is a partition of the domain.

• A product preorder is when you have a product of two sets and you can say that (x , y) ≤ (x ′, y ′)

iff x ≤ x ′ and y ≤ y ′.

• An opposite preorder is denoted as ≤op and is simply the reverse of the original preorder.

Definition 1.59. A monotone map between preorders (A,≤A) and (B ,≤B ) is a function f : A → B

such that ∀ x , y ∈ A, x ≤A y ⇒ f (x ) ≤B f (y)

• Visually, monotone maps can be thought of as mappings between Hasse diagrams where the lines

do not “criss cross”.

• For finite sets, the power set has a natural monotone map to the natural numbers. So, the number

of each elements in a subset is mapped to its cardinality.

• I am a little stuck on Example 1.64. It stems from a misunderstanding of upper sets as presented

in Example 1.54. Reading the definition of an upper set again, I realize my confusion

• So an upper set is a set where, if an element exists in the set, so does any element greater than

it. U (P) denotes all upper sets that can be formed from P . I thought that U (P) was eqivalent to

an upper set, but they are two different things.

• Now, Example 1.64 is obvious since U (P) has the same binary relation as the power set.

• I got exposed to the Yoneda lemma in Exercise 1.66, but I honestly do not see the importance of

it.

1.3 Meets and joins

Definition 1.81. For a preorder (P ,≤), we say p ∈ P is a meet of A if

(a) ∀ a ∈ A, p ≤ a

2



(b) ∀ q ≤ a, ∀ a ∈ A, we have that q ≤ p

Alternatively, we can write p =
∧
A. Because it is a meet of all elements of A. This is essentially a

redefinition of infimum.

Similarly, p is a join of A if

(a) ∀ a ∈ A, a ≤ p

(b) ∀ q such that a ≤ q , ∀ a ∈ A, we have that p ≤ q

Again, we can rewrite this as p =
∨
A since it is the join of all elements in A, and this corresponds to

the supremum of a set.

• Remark 1.82 is an interesting thought. I can’t think of any examples as of now because I’m still

thinking of meets and joins as infimums and supremums. Actually, if I think about it as a Haase

diagram, if there are multiple “upper” and “lower” level elements, then there can be non-unique

meets and joins.

• My above idea would not work in all cases. For example a discrete ordering has no meet and join.

• In Example 1.84, there is an good sample scenario of when two non-equal elements c and d are

congruent. Also, it shows the correct case of when there can be multiple meets, and multiple joins

are easily imagined.

• Multiple meets or joins are always congruent to each other

• Congruent but not equal elements are giving me a little insight into the “non-equal elements are

treated as equals statement”

• join,
∨

→ sup

• meet,
∧

→ inf

Definition 1.92. A monotone map f : P → Q preserves meets/joins if f (a∧b) ∼= f (a)∧ f (b) ∀ a, b ∈ P

(the meet gets replaced by join for join preservation).

Definition 1.93. A monotone map has a generative effect if it does not preserve joins.

• A monotone map Φ : P → Q is a phenomenon of P observed by Q .

• In the case of a generative effect, we are observing something ‘unexpected’ that we can’t understand

just by combining our observations of f (a) and f (b)–we need information about the connection

between sets P ,Q .

• It seemed strange that generative effects aren’t also defined when meets aren’t preserved, but the

last few paragraphs of 1.3 makes me think that it has essentially the same effect. Here is what

John Baez had to say about it:

3



• For any monotone map f : P → Q , if a, b ∈ P have a join and so do f (a), f (b), then assuming

WLOG a ≤ b:

a ≤ b ≤ a ∨ b ⇒ f (a) ≤ f (b) ≤ f (a) ∨ f (b)

⇒ f (a) ∨ f (b) ≤ f (a ∨ b)

1.4 Galois connections

Definition A. Galois connection between preorders P and Q is a pair of monotone maps (f : P →
Q , g : Q → P) such that ∀ p ∈ P , q ∈ Q ,

f (p) ≤ q ⇔ p ≤ g(q)

We say that f is the left adjoint of g and g is the right adjoint of f .

• Essentially, a Galois connection is a pair of Hasse diagrams with mappings between them such that

the lines do not criss-cross between the two diagrams.

• According to Example 1.97, taking the map 3 × −, if we treat is as a right adjoint, then the

corresponding left adjoint is is ⌈−/3⌉

• I don’t really understand the difference between a left adjoint and a right adjoint. For example,

why would the right adjoint of the map in Example 1.97 not be the same as the left adjoint?

• To find a right adjoint g , the following must be true:

3x ≤ y ⇔ x ≤ g(y)

for x ∈ Z and y ∈ R. If your draw out the Haase diagrams and the left adjoint, it becomes clear

that the right adjoint is ⌊y/3⌋. Still, I do not fully intuitively see this without the Hasse diagram.

I should do more exercises.

• An explanation of what happened: We had a Galois connection and we were asked to find the

right adjoint of a right adjoint. Visually, we had a mapping between two Hasse diagrams that did

not criss cross, and then we removed all the left adjoint lines, moved the left Hasse diagram to the

right hand side of the right diagram, and then reflected the right diagram–including its mapping

lines–over the y-axis, and tried to find a suitable right adjoint for that. It is clear that the original

left adjoint would not work because we would need to somehow reverse the cieling function, which

is not possible.

4



• To be more specific, Hasse diagrams with maps that don’t criss cross is not the only requirment.

The left adjoint can’t map multiple elements ”up” and the right adjoint can’t map multiple elements

”down”

• The previous observation is better summed up in remark 1.100

• To show a function g : S → T induces a Galois connection g! : Prt(S ) ↔ Prt(T ) : g∗ between

preorders of the partitions of S and T , we show the following

• Start with a partition ∼S of S and to obtain ∼T on T , then two elements t1, t2 ∈ T are in the

same part t1 ∼T t2 if there exists s1, st ∈ S such that s1 ∼S s2 and g(s1) = t and g(s2) = t2

• Still, it is possible that we get t1 ∼ t2 and t2 ∼ t3 without t1 ∼?
T t3 even though partitions must

be transitive. So, we need to take the transitive closure which results in g!.

• The reason we take the transitive closure is because ∼S and simT should be equivalence relations,

which means they must be transitive. So, it is only natural to “force” g to be transitive from

S → T by taking the transitive closure.

Proposition 1.107. If f : P → Q and g : Q → P are monotone maps, then the following are equivalent:

1. f and g form a galois connection and f is a left adjoint of g

2. For all p ∈ P , q ∈ Q we have that p ≤ g(f (p)) and f (g(q)) ≤ q

• The above is an easy exercise. Note that replacing ≤ with ∼= gives us the definition of an isomor-

phism, so we can think of a Galois connection as a “weaker” isomorphism.

Definition 1.75. Let (P ,≤P ) and (Q ,≤Q) be preorders. A monotone function f : P → Q is an

isomorphism if there exists a monotone function g : Q → P such that f ◦ g = idQ and g ◦ f = idP .

• According to exercise 1.110, the left and right adjoints to a monotone function are unique up to

an isomorphism.

Proposition 1.111. Right adjoints preserve meets and left adjoints preserve joins: if f : P → Q and

g : Q → P form a Galois connection, then

g
(∧

A
)
∼=

∧
g(A)

f
(∨

A
)
∼=

∨
f (A)

where A is any subset of P or Q .

Proof

Define m =
∧
A, then since m ≤ a for all a ∈ A by definition, it follows that

g(m) ≤ g(a) ∀ a ∈ A because g is monotone.

Then, it suffices to show that g(m) is the greatest lower bound for g(A). For some

b such that b ≤ g(a) ∀ a ∈ A, by the Galois connection then f (b) ≤ a. So, f (b)

is a lower bound for a, but since m is the greatest lower bound, it follows that

f (b) ≤ m. Then, b ≤ g(m), therefore g(m) is the greatest lower bound for g(A).

The joins are preserved similarly.

5



• Recall that we have a generative effect when a map does not preserve joins. Since left adjoints

preserve joins, they do not have generative effects

• We will find that a monotone map does not have generative effects–it preserves joins–iff it is a left

adjoint to some other monotone.

Theorem 1.115. (Adjoint functor theorem for preorders) Suppose P and Q are preorders and Q has

all meets. A monotone map g : Q → P preserves meets iff it has a right adjoint. If instead P has all

joins and Q is any preorder, a monotone map f : P → Q preserves joins iff it is a left adjoint.

Proof

We already showed that right adjoints preserve meets, so to prove the iff we only

need to show that if g preserves meets, then it has a right adjoint:

Suppose g is a monotone map that preserves meets. Then, define f : P → Q by

f (p) =
∧

{q ∈ Q : g(q) ≤ p}

We need to show that f is a right adjoint to g . First, it is seen that f is well

defined since Q contains all meets. Second, we see that

f (p) ≤ q ⇔ p ≤ g(q)

by the definition of a meet. So now we need to show that f is monotone. Suppose

p ≤ p′, then {q ′ ∈ Q | p′ ≤ g(q ′)} ⊆ {q ∈ Q | p ≤ g(q)}. So, this leads us to say

that f (p) ≤ f (p′), thus f is monotone.

The second statement is proved in a similar manner.

• The proof of the monotonicity of f is accurate, but I feel like I might have made some logical leaps

in proving that it is also a left adjoint. The proof listed in the textbook is more thorough

• In example 1.117, I am a little confused by what is meant by ‘the’ left adjoint and ‘the’ right

adjoint. We saw that the adjoints were unique wrt to each other upto an isomorphism, but that

surely can’t mean that we are guaranteed that f! and f∗ are a galois connection, right?

Exercise 1.119. Part 1 is trivial. Part 2 goes as follows:

Let p′ = (f o
9 g)(p), and by proposition 1.107,

(f o
9 g)(p) ≤ (f o

9 g o
9 f o

9 g)(p)

I am a little stuck on the other inequality, so I will reference the solution.

Next, letting q = f (p), the same proposition gives us

f (g(f (p))) ≤ f (p) ⇒ g(f (g(f (p)))) ≤ g(f (p))

Which is

(f o
9 g o

9 f o
9 g)(p) ≤ (f o

9 g)(p)

6



Definition 1.120. A closure operator j : P → P on a preorder P is a monotnoe map such that for all

p ∈ P we have

(a) p ≤ j (p)

(b) j (j (p)) ∼= j (p)

• We can define preorders on the set of relations on a set as well as the set of preorders relations on

a set.

• A preorder of preorders in a level shift.

7


